IGBT行业技术论文汇总

    IGBT(Insulated Gate Bipolar Transistor),绝缘三双极型功率管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式电力电子器件。应用于交流电机、变频器、开关电源、照明电路、牵引传动等领域。

  IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。虽然最新一代功率MOSFET器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 技术高出很多。较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。IGBT基本结构见图1中的纵剖面图及等效电路。

  IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。如等效电路图所示(图1),其中一个MOSFET驱动两个双极器件。基片的应用在管体的P+和N+ 区之间创建了一个J1结。

  IGBT是一种功率晶体,运用此种晶体设计之UPS可有效提升产品效能,使电源品质好、效率高、热损耗少、噪音低、体积小与产品寿命长等多种优点。

  用于有源电力滤波器的IGBT驱动及保护研究

  l 前言

  绝缘栅场效应晶体管(IGBT)作为一种复合型器件,集成了MOSFET的电压驱动和高开关频率及功率管低损耗、大功率的特点,在电机控制、开关电源、变流装置及许多要求快速、低损耗的领域中有着广泛的应用。本文对应用于有源电力滤波器的IGBT的特性及其专有EXB84l型驱动器的设计进行讨论,并提出一种具有完善保护功能的驱动电路。

  有源电力滤波器设计中应用4个IGBT作为开关,并用4个EXB84l组成驱动电路,其原理如图l所示。在实验中,根据补偿电流与指令电流的关系,用数字信号处理器(DSP)控制PWM引脚的高低电平,并由驱动电路控制IGBT的通断。驱动电路同时对过流故障进行监测,由DSP采取封锁控制信号、停机等处理。

    2 驱动电路的设计

  2.1 驱动电路电源

  驱动电路需要4路相互隔离的直流电源为4路IGBT驱动电路供电,用220V/22V变压器对4路交流电源分别整流,用电容器和78L24型电压调整器稳压后输出4路24V直流电压,如图2所示。

     2.2 栅极电压

  IGBT通常采用栅极电压驱动,它对栅极驱动电路有着特殊的要求。栅极驱动电压脉冲的上升率和下降率要足够大,导通时,前沿很陡的栅极电压UGE可以使IGBT快速导通,并减小导通损耗,关断时,其栅极驱动电路要给IGBT提供一个下降很陡的关断电压,并在栅极和发射极之间施加一个适当的反向负偏压,以便使IGBT快速关断,并减小关断损耗。IGBT导通后,栅极的驱动电压和电流要有足够的宽度,以保证IGBT在瞬时过载时未退出饱和区受到损坏。栅极驱动电压推荐值为15 V

  摘要:对IGBT的特性及使用时的注意事项进行了探讨,提出了选择和安装过程中应该注意的方面。

  1 IGBT模块简介

  IGBT是Insulated Gate Bipolar Transistor(绝缘栅双极型晶体管)的缩写,IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,它融和了这两种器件的优点,既具有MOSFET器件驱动功率小和开关速度快的优点,又具有双极型器件饱和压降低而容量大的优点,其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十kHz频率范围内,在现代电力电子技术中得到了越来越广泛的应用,在较高频率的大、中功率应用中占据了主导地位。

  IGBT的等效电路如图1所示。由图1可知,若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOS 截止,切断PNP晶体管基极电流的供给,使得晶体管截止。IGBT与MOSFET一样也是电压控制型器件,在它的栅极—发射极间施加十几V的直流电压,只有在uA级的漏电流流过,基本上不消耗功率。

 图1 IGBT的等效电路

  2 IGBT模块的选择

  IGBT模块的电压规格与所使用装置的输入电源即试电电源电压紧密相关。其相互关系见下表。使用中当IGBT模块集电极电流增大时,所产生的额定损耗亦变大。同时,开关损耗增大,使原件发热加剧,因此,选用IGBT模块时额定电流应大于负载电流。特别是用作高频开关时,由于开关损耗增大,发热加剧,选用时应该降等使用。

  3 使用中的注意事项

  由于IGBT模块为MOSFET结构,IGBT的栅极通过一层氧化膜与发射极实现电隔离。由于此氧化膜很薄,其击穿电压一般达到20~30V。因此因静电而导致栅极击穿是IGBT失效的常见原因之一。因此使用中要注意以下几点:

  1在使用模块时,尽量不要用手触摸驱动端子部分,当必须要触摸模块端子时,要先将人体或衣服上的静电用大电阻接地进行放电后,再触摸;

  2在用导电材料连接模块驱动端子时,在配线未接好之前请先不要接上模块;

  3尽量在底板良好接地的情况下操作。

  在应用中有时虽然保证了栅极驱动电压没有超过栅极最大额定电压,但栅极连线的寄生电感和栅极与集电极间的电容耦合,也会产生使氧化层损坏的振荡电压。为此,通常采用双绞线来传送驱动信号,以减少寄生电感。在栅极连线中串联小电阻也可以抑制振荡电压。

  此外,在栅极—发射极间开路时,若在集电极与发射极间加上电压,则随着集电极电位的变化,由于集电极有漏电流流过,栅极电位升高,集电极则有电流流过。这时,如果集电极与发射极间存在高电压,则有可能使IGBT发热及至损坏。

  在使用IGBT的场合,当栅极回路不正常或栅极回路损坏时(栅极处于开路状态),若在主回路上加上电压,则IGBT就会损坏,为防止此类故障,应在栅极与发射极之间串接一只10KΩ左右的电阻。

  在安装或更换IGBT模块时,应十分重视IGBT模块与散热片的接触面状态和拧紧程度。为了减少接触热阻,最好在散热器与IGBT模块间涂抹导热硅脂。一般散热片底部安装有散热风扇,当散热风扇损坏中散热片散热不良时将导致IGBT模块发热,而发生故障。因此对散热风扇应定期进行检查,一般在散热片上靠近IGBT模块的地方安装有温度感应器,当温度过高时将报警或停止IGBT模块工作。

  4 保管时的注意事项

  1一般保存IGBT模块的场所,应保持常温常湿状态,不应偏离太大。常温的规定为5~35℃ ,常湿的规定在45~75%左右。在冬天特别干燥的地区,需用加湿机加湿;

  2尽量远离有腐蚀性气体或灰尘较多的场合;

  3在温度发生急剧变化的场所IGBT模块表面可能有结露水的现象,因此IGBT模块应放在温度变化较小的地方;

  4保管时,须注意不要在IGBT模块上堆放重物;

  5装IGBT模块的容器,应选用不带静电的容器。

  5 结束语

  IGBT模块由于具有多种优良的特性,使它得到了快速的发展和普及,已应用到电力电子的各方各面。因此熟悉IGBT模块性能,了解选择及使用时的注意事项对实际中的应用是十分必要的。

  摘要:提出了一种直接检测IGBT发生短路故障的方法,在详细分析IGBT短路检测原理的基础上给出了相应的IGBT短路保护电路。仿真及实验结果均证明该电路工作稳定可靠,能很好地对IGBT实施有效的保护。

  关键词:IGBT 短路保护 电路设计

  固态电源的基本任务是安全、可靠地为负载提供所需的电能。对电子设备而言,电源是其核心部件。负载除要求电源能供应高质量的输出电压外,还对供电系统的可靠性等提出更高的要求。

  IGBT是一种目前被广泛使用的具有自关断能力的器件开关频率高广泛应用于各类固态电源中。但如果控制不当,它很容易损坏。一般认为IGBT损坏的主要原因有两种:一是IGBT退出饱和区而进入了放大区使得开关损耗增大;二是IGBT发生短路,产生很大的瞬态电流,从而使IGBT损坏。IGBT的保护通常采用快速自保护的办法即当故障发生时,关断IGBT驱动电路,在驱动电路中实现退饱和保护;

或者当发生短路时,快速地关断IGBT。根据监测对象的不同IGBT的短路保护可分为Uge监测法或Uce监测法二者原理基本相似都是利用集电极电流IC升高时Uge或Uce也会升高这一现象。当Uge或Uce超过Ugesat或Ucesat时,就自动关断IGBT的驱动电路。由于Uge在发生故障时基本不变,而Uce的变化较大并且当退饱和发生时Uge变化也小难以掌握因而在实践中一般采用Uce监测技术来对IGBT进行保护。本文研究的IGBT保护电路,是通过对IGBT导通时的管压降Uce进行监测来实现对IGBT的保护。

  采用本文介绍的IGBT短路保护电路可以实现快速保护,同时又可以节省检测短路电流所需的霍尔电流传感器,降低整个系统的成本。实践证明,该电路有比较大的实用价值,尤其是在低直流母线电压的应用场合,该电路有广阔的应用前景。该电路已经成功地应用在某型高频逆变器中。

  1 短路保护的工作原理

  图1(a)所示为工作在PWM整流状态的H型桥式PWM变换电路(此图为正弦波正半波输入下的等效电路,上半桥的两只IGBT未画出),图1(b)为下半桥两只大功率器件的驱动信号和相关的器件波形。现以正半波工作过程为例进行分析(对于三相PWM电路,在整流、逆变工作状态或单相DC/DC工作状态下,PWM电路的分析过程及论基本类似)。

  在图1所示的电路中,在市电电源Us的正半周期,将Ug2.4所示的高频驱动信号加在下半桥两只IGBT的栅极上,得到管压降波形UT2D。其工作过程分析如下:在t1~t2时刻,受驱动信号的作用,T2、T4导通(实际上是T2导通, D4处于续流状态),在Us的作用下通过电感LS的电流增加,在T2管上形成如图1(b)中UT2D所示的按指数规律上升的管压降波形,该管压降是通态电流在IGBT导通时的体电阻上产生的压降;在t2~t3时刻,T2、T4关断,由于电感LS中有储能,因此在电感LS的作用下,二极管D2、D4续流,形成图1(b)中UT2.D的阴影部分所示的管压降波形,以此类推。分析表明,为了能够检测到IGBT导通时的管压降的值,应该将在t1~t2时刻IGBT导通时的管压降保留,而将在t2~t3时刻检测到的IGBT的管压降的值剔除,即将图1(b)中UT2.D的阴影部分所示的管压降波形剔除。由于IGBT的开关频率比较高,而且存在较大的开关噪声,因此在设计采样电路时应给予足够的考虑。

  图2 IGBT短路保护电路原理图

  根据以上的分析可知,在正常情况下,IGBT导通时的管压降Uce(sat)的值都比较低,通常都小于器件手册给出的数据Uce(sat)的额定值。但是,如果H型桥式变换电路发生故障(如同一侧桥臂上的上下两只IGBT同时导通的 “直通”现象),则这时在下管IGBT的C~E极两端将会产生比正常值大很多的管电压。若能将此故障时的管压降值快速地检测出来,就可以作为对IGBT进行保护的依据,从而对IGBT实施有效的保护。

     2 短路保护电路的设计

  由对图1所示电路的分析,可以得到IGBT短路保护电路的原理电路图,如图2所示。在图2所示电路中IC4及其外围器件构成选通逻辑电路,由IC5及其外围器件构成滤波及放大电路,IC2及其外围器件构成门限比较电路,IC1及其外围器件构成保持电路。正常情况下,D1、D2、D3的阴极所连接的IC2D、IC2C及CD4011的输出均为高电平,IC1的输出状态不会改变。假设由于某种原因,在给T2发驱动信号的时候,H型桥式PWM变换电路的左半桥下管T2的管压降异常升高(设电平值为“高”),即T2-d端电压异常升高,则该高电平UT2-d通过R2加在D8的阴极;同时,发给T2的高电平驱动信号也加在二极管D5的阴极。对IC2C来说,其反相输入端为高电平,若该电平值大于同相输入端的门槛电平值的话,则IC2C输出为“低”。该“低”电平通过D2加在R-S触发器IC1的R输入端,使其输出端Q的输出电平翻转,向控制系统发出IGBT故障报警信号。如果是由于右半桥下管T4的管压降异常升高而引起IC2D输出为“低”,则该“低”电平通过D1加在R-S触发器IC1的R输入端,使其输出端Q的输出电平翻转,向控制系统发出IGBT故障报警信号。由IC5A和IC5C及其外围器件构成的滤波及放大电路将选通电路送来的描述IGBT管压降的电压信号进行预处理后,送给由IC5B构成的加法器进行运算处理。若加法器的输出电平大于由R22和R32确定的门槛电平,则会使R-S触发器IC1的R端的第三个输入端为“低”,也向控制系统发出IGBT故障报警信号。改变由R22和R32确定的门槛电平,就可以灵活地改变这第三路报警信号所代表的物理意义,从而灵活地设计保护电路。图2中的端子T4-d、T2-d,分别接在T4、T2的集电极上,T4-G、T2-G分别接IGBT器件T4、T2的驱动信号。在电路设计时应该特别注意的是,D8、D5、D9、D4必须采用快速恢复二极管。

  

   3 仿真及实验结果

  当图1所示的PWM变换器工作在单相高频整流模式下,应用PSPICE仿真软件对图2所示的电路进行仿真研究,可以得到如图3所示的结果。图3所示的仿真波形相当于在图2电路中IC5B的第7脚观察到的信号波形。仿真结果表明,检测电路可以快速、有效地将PWM变换器的下管导通时的管压降检测出来。图4所示波形是实际电路工作时检测到的相关波形。图中,1#通道显示的是单相高频整流电感电流的给定波形,2#通道显示的是实际检测到的图2电路中IC5B的第7脚的工作波形。比较图3和图4可以得出,该检测电路可以快速、有效地检测出IGBT导通时的管压降,从而对IGBT实施有效的保护。

      图5所示为IGBT过流时实际检测到的PFC电感中流过的电流及保护电路动作的波形。

  电路实际运行结果证明,本文介绍的IGBT短路保护电路可以有效地对IGBT实施保护,成本低,动作可靠。实践证明,该电路有比较大的实用价值,尤其是在低直流母线电压的应用场合,该电路有广阔的应用前景。该电路已经成功地应用在某型3KVA高频逆变器中。

   高压IGBT模块2SD315AI-33的应用研究

  摘要:介绍了一种新型高性能高压IGBT集成驱动模块2SD315AI-33的管脚功能和工作原理,同时还给出了该模块与同类产品相比的显著性能特点,介绍了2SD315AI-33在“双逆变器-电机”能量互馈式交流传动试验系统中的应用方法,讨论了在实际应用中的注意事项。

  关键词:IGBT 驱动模块 2SD315AI-33 逆变器

  2SD315AI-33是瑞士CONCEPT公司专为3300V高压IGBT的可靠工作和安全运行而设计的驱动模块,它以专用芯片组为基础,外加必需的其它元件组成。该模块采用脉冲变压器隔离方式,能同时驱动两个IGBT 模块,可提供±15V的驱动电压和±15A的峰值电流,具有准确可靠的驱动功能与灵活可调的过流保护功能,同时可对电源电压进行欠压检测,工作频率可达兆赫兹以上;电气隔离可达到6000VAC。

  1 2SD315AI-33简介

  1.1 外形及管脚功能

  图1所示为2SD315AI-33的外形图,该芯片共有44个管脚。具体功能如下:

  1,2脚(VDD):信号电源;

  

  3脚(SO1):通道1状态输出;

  4脚(VL/Reset): 定义逻辑电平/错误信号复位;

  5脚(RC1):通道1死区RC网络;

  6脚(InB):PWM2/ENABLE;

  7脚(RC2):通道2死区RC网络;

  8脚(MOD):模式选择;

  9脚(SO2):通道2状态输出;

  10脚(InA):PWM1/PWM;

  11,12脚(GND):15V电源地;

  13~17脚(VDC):DC/DC驱动电源;

  18~22脚(GND):DC/DC驱动电源地;

  23脚(Ls2):通道2的状态显示端;

  24脚(C2):通道2的集电极检测端;

  25脚(Rth2): 通道2的阈值电阻端;

  26,27脚(E2):通道2的发射极;

  28脚(Viso2): 通道2的DC/DC输出侧电源;

  29,30脚(COM2):通道2的DC/DC输出侧地;

  31,32脚(G2):通道2的栅极;

  33,34脚(NC):未用;

  35脚(Ls1):通道1的状态显示端;

  36脚(C1):通道1的集电极检测端;

  37脚(Rth1):通道1的阈值电阻端;

  38,39脚(E1):通道1的发射极;

  40脚(Viso1):通道1的DC/DC输出侧电源;

  41,42脚(COM1):通道1的DC/DC输出侧地;

  43,44脚(G1):通道1的栅极。

  1.2 主要参数

  2SD315AI-33的极限参数如下

  ●供电电压VDD和VDC:16V;

  ●逻辑信号输入电平:VDD;

  ●门极峰值电流Iout:±18A;

  ●内部开关电源输出功率:6W;

  ●输入输出隔离电压:6000VAC50Hz/min;

  ●工作温度:-40~85℃;

  下面是2SD315AI-33的主要电参数

  ●输入输出延迟开通时间tpdon:300ns;

  ●关断时间tpd(off):350ns;

  ●短路或欠压保护阻断时间:1s;

  ●输出上升时间tr(out):160ns;

  ●输出下降时间tf(out):130ns;

  ●最大电压上升率:100kV/μs。

     2 工作原理及性能特点

  2.1 工作原理

  图2为2SD315AI-33的功能框图。它主要由DC/DC转换电路、输入处理电路、驱动输出及逻辑保护电路组成。

  DC/DC转换电路的功能是将输入部分与工作部分进行隔离。而其输入处理电路由LDI001及其外围电路组成。由于控制电路产生的PWM信号不能直接通过脉冲变压器,尤其是当脉冲信号的频率和占空比变化较大时,尤为困难。LDI001就是专门为此而设计的,此专用集成芯片的功能主要是对输入的PWM信号进行编码,以使之可通过脉冲变压器进行传输。由于该器件内部带有施密特触发器,因此对输入端信号无特殊的边沿陡度要求,并能提供准静态的状态信号反馈。将其设计为集电极开路方式,可以适应任何电平逻辑,并可直接产生死区时间。以上优点使得接口既易用又灵活,从而省去了其它专用电路所必需的许多外围器件。

  驱动输出及逻辑保护电路的核心芯片是IGD001。它将变压器接口、过流短路保护、阻断逻辑生成、反馈状态记录、供电监视和输出阶段识别等功能都已集成在一起。每个IGD用于一个通道,其具体功能是对脉冲变压器传来的PWM信号进行解码,对PWM信号进行功率放大,对IGBT的短路、过流及电源的欠压检测保护,并向LDI反馈状态,以产生短路保护的响应时间和阻断时间等。

  2.2 性能特点

  2SD315AI-33与其它驱动器相比具有以下几个显著的特点:

  (1)可灵活定义逻辑电平;

  (2)可自由选择工作模式;

  (3)具有短路和过流保护功能;

  (4)具有欠压监测功能;

  (5)可动态设定短路保护阈值

  3 2SD315AI-33在实际中的应用

  3.1 应用实例

  笔者所在实验室中正在设计的“双逆变器-电机”能量互馈式交流传动试验系统由于采用专为电力机车所设计的300kW异步电机,故逆变器和变流器的主开关器件选用的是EUPEC公司的高压IGBT 模块FZ1200R33KF1。该器件的电压等级为3300V,电流等级为1200A。根据FZ1200R33KF1对驱动保护电路的要求以及2SD315AI-33驱动模块的性能特点,笔者设计了IGBT的驱动保护电路,具体如图3所示。

  该电路由输入保护、电源保护、上电复位、死区时间设定及与IGBT的接口电路几部分组成,该电路工作于半桥模式。以下分别予以介绍:

  输入保护:通常驱动板通过引线与控制电路相连,因此,应对驱动电路的输入InputA和InputB给予适当地保护,以便在掉电或输入信号呈高阻时,输入端能够通过电阻Rx1接地。电容Cx1的作用是抑制输入端出现的短脉冲或有害的尖峰脉冲。该电路会产生大约1μs的信号延迟。

  电源保护:在一定的情况下,如果驱动器外部发生短路(如IGBT毁坏或短路),则驱动模块内部的DC/DC变换器可能会导致电源线短路。故设计时在VDD端增加了一个熔断器,以保证在出现故障时电路板不致毁坏。图中的16V稳压管Z2用于过压保护。

  上电复位:由于上电后的错误信息总是保存在驱动模块的错误寄存器中,因此在驱动电路与控制电路分离的情况下,可通过图3连接于VL/Reset的上电复位电路进行复位。该电路同时还有欠压保护功能。VDD>12.7V时,Z1反向击穿,Q1导通,Q2截止,VL为高电平,驱动器开通;而当VDD<12V时,Q1截止,Q2导通,VL为低电平,驱动器关断。另外,该复位电路还可保证在开启电源后的一个较短时间内使加于所有IGBT器件控制端上的电压均为低,以保证所有IGBT器件均处于关断状态。

  与IGBT接口:当开通时,驱动电流经RG1和二极管DG流向IGBT,即开通电阻Ron=RG1 关闭时,由于二极管DG的单向导电性, 门极经RG1和RG2放电即关断电阻Roff=RG1+RG2。这样就使得开通的di/dt、dV/dt和关断的dV/dt可以分别控制,从而改善了开关过程,减少了开关损耗。

  3.2 设计中需要特别注意的问题

  在任何时候都不能使过流检测管脚CX直接接到IGBT的集电极,而需通过二极管连接。其反向承受的峰值电压应超过逆变器直流侧电压的60%,以防止高压串入驱动电路。

  在管脚Visox和Lsx之间需串接一个电阻和发光二极管以指示通道X的工作状态,在正常情况下,发光二极管发光,而在发生短路和欠压故障时,发光二极管熄灭。但由于制作工艺上的原因,管脚Lsx对于干扰极为敏感,因此,在设计中若要指示状态,应把发光二极管接在电路板上尽量靠近输出端的地方,若不需状态指示,则必须把管脚Lsx和COMx短接。千万不要通过很长的引线将发光二极管引出,或者将Lsx端悬空,否则会因电磁干扰的引入使整个电路不能正常工作。

  电容CGEX 是根据高压IGBT开通时的特殊性来实现开通时di/dt、dV/dt的分别控制。选取时要反复调试,否则会使驱动输出信号发生振荡。

  3.3 门极驱动布线

  门极驱动布线对防止潜在的振荡、减慢门极电压的上升、减少噪声损耗、降低门极电源电压或减少门极保护电路的动作次数有很大的影响。因此,门极布线的设计必须依从以下的原则:

  (1) 布线必须将驱动器的输出级和IGBT之间的寄生电感减至最低,这相当于把门极的连线和发射极的连线之间包围的环路面积减至最低。

  (2) 必须正确放置门极驱动板,以防止功率电路和控制电路之间的电感耦合。

  (3) PCB板的条线之间不宜太过靠近,否则IGBT的开关会使其相互电位改变,因为过高的dV/dt会通过寄生电容耦合噪声。

  (4) 安装时,为缩短连线,应把驱动板直接用螺丝拧在IGBT模块上。

  图3 3300V/1200A IGBT的驱动电路

  4 结论

  通过以上介绍可知,高压IGBT驱动模块2SD315A-33具有以下优点:

  (1)只需简单调整MOD脚,就可使该电路在半桥模式和直接模式下运行。

  (2)该驱动模块的接口非常简单,能处理所有从5V~15V电平的逻辑信号。由于输入口内部有施密特触发器,它对输入端信号无特殊的边沿陡度要求,而且状态反馈输出端设计为集电极开路,因此,该电路可以适应任何电平逻辑。

  (3)由于采用双极性的驱动电压(15V),使得任何厂家的各种级别的IGBT模块都可安全运行;负偏置的使用使得电路的抗干扰能力大大增强,这样就很容易实现IGBT模块的并联。

  (4)内部电压隔离使得即使是多个驱动模块,也可以共用一个驱动电源,这不但省去了人力和资金,而且电磁干扰程度也大大降低。

  (5)过流保护能准确无误的动作,且简单易调。同时具有欠压保护功能,并采取与过流保护同样的措施。

  (6)用变压器作隔离输出级使得该驱动模块可用在控制回路与电力回路电位相差较大或电位变化较大的装置中,同时脉冲变压器的双向工作,既可传输驱动信号,也可传输反馈信号。

本文由中国电力电子产业网(http://www.p-e-china.com)编辑,转载请说明来源

关键词:IGBT    IGBT原理

why are women unfaithful site women who cheat on men

相关文章