安森美丰富的SiC方案解决新一代UPS的设计挑战

随着云计算、超大规模数据中心、5G应用和大型设备的不断发展,市场对不间断电源 (UPS)的需求保持高位,且正在往小型化、高容量化、高效化发展,设计人员面临如何在性能、能效、尺寸、成本、控制难度之间权衡取舍的挑战,安森美(onsemi)基于新一代半导体材料碳化硅(SiC)的方案,有助于变革性地优化UPS设计。

安森美是领先的智能电源方案供应商之一,也是全球少数能提供从衬底到模块的端到端SiC方案供应商,提供先进的SiC、SiC/Si 混合和 IGBT 模块技术,以及广泛的分立器件、门极驱动器等周边器件,满足低、中、高功率UPS 设计的各种要求,加之技术团队的应用支援,帮助设计人员解决上述挑战,满足大数据时代不断增长的需求。本文重点介绍安森美应用于UPS的SiC方案。

在线式UPS更适合大功率应用场景

新一代UPS的设计挑战和考量

为了应对持续增长的电能保护需求,新一代UPS需具有以下特点:

· 超过98%的高能效,高功率密度,功率因数>0.99,无变压器设计

· 更高的输出功率:大型数据中心对UPS要求很高,一台3相输出的UPS的母线电压是800 V。模块化UPS可拓展、高冗余,通过连接多个产品能达到100 kVA更大输出功率,以应对大型数据中心的需求

· 0切换时间:相较离线式UPS的2到10 ms切换时间,在线式UPS具有0切换时间,以应对各种情况下的紧急问题

· 具有调节输入电压和优化输出电压的能力,以减少电池的使用频率,从而增加使用时间,节省成本

· 优秀的散热能力,减少本身由散热器带来的重量和成本,同时有能力在受限的空间里增加额外的功率模块

为了实现这些特性,我们需要权衡考虑以下因素:

· 控制总拥有成本(TCO, Total Cost of Ownership),包括生产成本、运输安装和后期维护的成本,以及存放设备的空间成本等。需要去考虑如何减小散热片、电感和电解电容以及风扇所占的空间和重量。

· UPS的可拓展化,模块化UPS的一个巨大优势就是可拓展,当需要增加容量时,只需要添加一个电源模块,一个模块尺寸重量较小,即使一个人也可以完成安装,大大减少了成本。

· 采用在线式UPS,在线式UPS相比其它种类的UPS能够处理更多输入电能质量问题,减少电池使用频率,同时其高频逆变器能够输出高质量高效率的正弦信号为负载供电。

· 拓扑对系统性能和能效的影响,3电平拓扑比2电平拓扑能效更高,在额定功率下,更高能效意味着更小的散热器和更好的可靠性,最关键的是电平数的增加使得电压输出更接近正弦波,但复杂的控制算法、更多的器件以及开关管数量增加会导致成本增加,设计人员需要在性能和价格之间权衡取舍。

· 使用SiC作为开关器件。

安森美用于UPS的SiC方案:阵容广,性能优

由于SiC具有更高的耐压能力、更低的损耗以及更高的导热率,可赋能UPS设计更高的功率密度和优化的系统成本,较低的系统损耗和更高的系统能效。安森美在SiC领域有着深厚的历史积淀,垂直整合模式确保可靠的品质和供应。


安森美的SiC MOSFET和SiC二极管产品线非常丰富,包含各种电压等级。SiC  MOSFET从650 V到1200 V,并且即将发布1700 V的产品,SiC二极管则是从650 V到1700 V都具备。对于UPS来说,SiC  MOSFET主要选择Rdson更小的产品。如安森美适用于UPS的1200 V M3S SiC MOSFET比领先行业的竞争对手减少达20%的功率损耗,原因是其使用更大尺寸的晶片(die),从而减少Rdson。


安森美目前主推的4-pin SiC MOSFET,相比3-pin的产品,额外的一根开尔文引脚(Kelvin Source)可消除源极引脚上的寄生电感,可提供更快的开关速度,从而降低导通损耗。

随着UPS的单元功率逐渐增加,也会有更多的设计人员考虑模块产品,将许多不同功能、大小的晶圆如IGBT、二极管封装在一个模块里,可减小由于单管引脚带来的杂散电感,降低器件在快速关断时产生的电压应力,减少生产流程的工序,提高产线效率,减轻了电气和结构研发设计人员的工作量,避免了因为单管工艺复杂造成的产品不良率,也让BOM的采购和供应链变得简单,缩短了产品投入市场的时间。而且从系统集成的角度来分析,模块的高成本是可以被其他优点摊薄的,例如简化生产流程和PCB的设计,高功率密度,较低的散热系统成本,简单的绝缘设计等。由于组装模块时的晶片都来自同一片晶圆上相邻的器件,晶片的一致性更高,这有利于晶片并联均流,增加了系统的长期运行可靠性。

安森美的半桥1200 V SiC MOSFET 2-PACK模块,含有2颗1200 V M1 SiC MOSFET,和一颗热敏测温电阻, Rdson非常低。它具有2种封装,F2封装NXH006P120MNF2的尺寸是F1 封装NXH010P120MNF1的一倍,更适合大功率的产品。同时,尺寸更大的die能改减少热阻,增加可经过的电流。安森美的900 V M2 SiC MOSFET 维也纳模块NXH020U90MNF2由两个900 V开关和2个1200 V SiC二极管组成,维也纳拓扑常用于PFC,相比其它的3电平方案,维也纳拓扑具有器件少,控制简单的特点。

除此之外,安森美的多通道SiC boost模块系列如下表,可用于电池充放电部分。

NXH100B120H3Q0


2 通道  50A/1200V IGBT, 20A/1200V SiC 二极管


NXH40B120MNQ0SNG


2通道40mΩ/1200V SiC MOSFET, 40A SiC 二极管


NXH80B120MNQ0SNG


2通道80mΩ/1200V SiC MOSFET, 20A SiC 二极管


NXH40B120MNQ1SNG


3通道40mΩ/1200V SiC MOSFET, 40A SiC 二极管


NXH240B120H3Q1PG


3通道60A/1200V IGBT,  20A/1200V SiC 二极管


不同模块的损耗对比

我们在一个boost升压电路对不同模块进行了对比,SiC MOSFET的导通损耗比IGBT混合模块低1到2倍,其关断损耗Eoff低5倍以上。这对提高系统开关频率,降低损耗意义很大。若在相同的开关频率下,全SiC模块较混合模块的温升和损耗更低,允许使用更小更经济的散热器,或者说散热条件一样时可以输出更高的功率。换一种评估方式,假设每路输出功率10 kW,随着开关频率的增加,由于较大的开关损耗,IGBT的结温和损耗远高于SiC MOSFET,因而全SiC 模块在减小电感值、电感尺寸和重量方面有巨大优势。


总结

SiC有助于变革性地优化UPS设计,满足大数据时代UPS小型化、高容量化、高效化的要求。安森美在SiC领域处于领先地位,是世界上少数能提供从衬底到模块的端到端SiC方案供应商之一,为UPS提供多种电压等级的高能效、高性能SiC MOSFET、SiC二极管、全SiC模块和混合SiC模块,配合安森美针对SiC优化的门极驱动器、传感、隔离和保护IC等周边器件和应用支援,帮助设计人员在性能、能效、尺寸、成本、控制难度之间做出最佳的权衡取舍。更多的UPS方案,请点击这里查看。


相关文章